Try Bifrost Enterprise free for 14 days. Explore now
curl --request POST \
--url http://localhost:8080/genai/v1beta/models/{model}:embedContent \
--header 'Content-Type: application/json' \
--data '
{
"model": "<string>",
"content": {
"role": "user",
"parts": [
{
"text": "<string>",
"thought": true,
"thoughtSignature": "aSDinaTvuI8gbWludGxpZnk=",
"inlineData": {
"mimeType": "<string>",
"data": "aSDinaTvuI8gbWludGxpZnk=",
"displayName": "<string>"
},
"fileData": {
"mimeType": "<string>",
"fileUri": "<string>",
"displayName": "<string>"
},
"functionCall": {
"id": "<string>",
"name": "<string>",
"args": {}
},
"functionResponse": {
"id": "<string>",
"name": "<string>",
"response": {},
"willContinue": true,
"scheduling": "<string>"
},
"executableCode": {
"language": "<string>",
"code": "<string>"
},
"codeExecutionResult": {
"outcome": "OUTCOME_UNSPECIFIED",
"output": "<string>"
},
"videoMetadata": {
"fps": 123,
"startOffset": "<string>",
"endOffset": "<string>"
}
}
]
},
"taskType": "<string>",
"title": "<string>",
"outputDimensionality": 123
}
'{
"embeddings": [
{
"values": [
123
],
"statistics": {
"tokenCount": 123
}
}
],
"metadata": {
"billableCharacterCount": 123
}
}Creates embeddings using Google Gemini API format.
curl --request POST \
--url http://localhost:8080/genai/v1beta/models/{model}:embedContent \
--header 'Content-Type: application/json' \
--data '
{
"model": "<string>",
"content": {
"role": "user",
"parts": [
{
"text": "<string>",
"thought": true,
"thoughtSignature": "aSDinaTvuI8gbWludGxpZnk=",
"inlineData": {
"mimeType": "<string>",
"data": "aSDinaTvuI8gbWludGxpZnk=",
"displayName": "<string>"
},
"fileData": {
"mimeType": "<string>",
"fileUri": "<string>",
"displayName": "<string>"
},
"functionCall": {
"id": "<string>",
"name": "<string>",
"args": {}
},
"functionResponse": {
"id": "<string>",
"name": "<string>",
"response": {},
"willContinue": true,
"scheduling": "<string>"
},
"executableCode": {
"language": "<string>",
"code": "<string>"
},
"codeExecutionResult": {
"outcome": "OUTCOME_UNSPECIFIED",
"output": "<string>"
},
"videoMetadata": {
"fps": 123,
"startOffset": "<string>",
"endOffset": "<string>"
}
}
]
},
"taskType": "<string>",
"title": "<string>",
"outputDimensionality": 123
}
'{
"embeddings": [
{
"values": [
123
],
"statistics": {
"tokenCount": 123
}
}
],
"metadata": {
"billableCharacterCount": 123
}
}Model name with action (e.g., embedding-001:embedContent)
Was this page helpful?